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INTRODUCTION 
What are the neurotransmitters that an NMR system might be able to see?:  Three major categories of 
substances can act as neurotransmitters, namely, amino acids, monoamines and peptides, but only the 
amino acid neurotransmitters, e.g., glutamate [Glu], γ-aminobutyric acid [GABA], aspartate [Asp] and 
glycine [Gly], reside with sufficient concentration in brain to be detected in-vivo with today’s one-
metre-bore NMR hardware.  In spite of this limitation, the amino acid neurotransmitters can provide a 
wealth of information about normal and compromised brain function because their metabolism is key 
to those functions (1). 

Why are the amino acid neurotransmitters so influential in controlling brain function?:  A satisfactory 
answer to this question is clearly beyond the scope of this talk.  Nonetheless, the significant role that 
NMR has played in the clarification of how the major workhorse transmitters, Glu (along with its 
sidekick glutamine [Gln]) and GABA function within the tightly coupled neuron-astrocyte system in 
normal brain, can be seen from the work of several groups.  References (2-5) are just a small selection 
from these. 
What do the amino acid neurotransmitters look like if you are an r.f. coil, surrounding a head, lying 
inside a magnetic field?:  Within the published literature it is usual to find the proton used for the 
measurement of steady-state neurotransmitter concentrations, whereas dynamic measurements of 
metabolite fluxes usually exploit the 13C nucleus.  We shall indicate schematically in Figs (1) to (4) 
how the neurotransmitter molecular structure affects first, the proton spectrum and secondly, the 13C 
NMR spectrum in Glu, Gln and GABA.  These diagrams illustrate the nuclear coupling schemes (6, 7) 
and their rudimentary 90º-acquire spectra at the not-so-high field strength of 3.0 T, thus reflecting a 
worst-case scenario for spectral resolution at the lowest level of the “high field” range.  It must also be 
borne in mind that the molecular structure is important to the understanding of the dynamic changes 
that occur in the NMR spectra during the measurement of the chemical rate processes that take place 
during metabolism (8). 
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What measurement problems are ameliorated by an increase in the magnetic field strength:  The 
greatest NMR induced hindrance to accuracy and precision in neurotransmitter proton spectroscopy is 
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the small chemical-shift range of the proton.  Not only does it lead to substantial spectral overlap, but 
for Glu, Gln and Asp it also leads to strong inter-proton scalar coupling effects.  The inter-proton 
polarization transfer that occurs due to this strong coupling modulates both the amplitude and the 
lineshape of a strongly-coupled proton spectrum in a manner different from that of weakly-coupled 
spin systems, and it is dependent on both pulse intervals and the pulses themselves. As a result a target 
neurotransmitter spectrum in relation to its contaminating background spectra will be quite dependent 
on the details of the localizing sequence design.  Higher fields increase the chemical-shift dispersion 
and thereby reduce the relative strength of the scalar coupling. This not only ameliorates some of these 
dependencies, but also gives rise to more spin-manipulation “elbow room” that makes editing easier. 

The biggest problem for direct 13C spectroscopy is its low signal to noise ratio (SNR), arising from a 
combination of low gyromagnetic ratio and low natural abundance.  The latter however, is the key to its 
power to provide the dynamic measurements of time-dependent 13C enrichments at specific molecular 
sites, that in turn reflect metabolic flux rates.  Higher fields increase SNR so that reduced averaging 
enables the temporal resolution of the time-dependent enrichments to be increased for a given SNR.  
The strong inter-proton scalar coupling affects both the direct observation of the 13C spectrum (by 
changing hetero-nuclear polarization transfer enhancements) and the indirect detection of 13C using 
surrogate proton signals (by inducing cross-talk between the proton multiplets) (9).  The increase in 
proton chemical-shift dispersion with increasing field strength, relative to the proton scalar coupling, 
reduces both of these effects. 

The following section and the multitude of citations are meant to provide a wide reference bas from 
which the key points will be discussed in the talk. 

THE SINGLE VOXEL METHODS COMMONLY APPLIED TO AMINO ACID NEUROTRANSMITTERS 
Scope:  Even discussing all the single-voxel methods in detail is beyond the scope of a short talk, I 
shall therefore concentrate on the physical underpinnings, with references to specific methods that best 
seem able to take advantage of these underpinnings for evaluating the amino acid neurotransmitters 
using protons or 13C.  High quality shimming will be assumed throughout.  A fairly recent review of 
13C spectroscopy (10) includes a significant discussion of the 13C methodology. 
Sequence Generalities:  All 
localizing MRS sequences 
contain r.f. pulses, gradient 
pulses and the pulse intervals 
between them.  As experimenters 
we would hope to find that the 
only effects of these sequence 
components were the effects for 
which they were designed, e.g., 
production and refocussing of 
transverse magnetization, 
localization of signal acquisition, 
phase encoding of spatial or 
spectral parameters, etc..  
However, the interactions 
between spins often cause other 
things to happen in parallel, e.g., 
the effect of transverse relaxation 
is well known.  The effects of scalar coupling are a bit more complex (see Fig (5)), and while some are 
a handicap, others are a boon. In general terms, and bearing in mind that many of the key brain 
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metabolites (not only some neurotransmitters) contain spins that are strongly coupled, a significant 
consequence of scalar coupling is that signal-generating transverse magnetization is spectrally 
dispersed and often lost in the creation and evolution of unobservable coherences.  This means that the 
signal intensity is typically less than one might expect (reduced yield) by assuming transverse 
relaxation to be the only signal loss mechanism.  The unobservable coherences can arise between the 
r.f. pulses through scalar-coupled evolution, and during the r.f. pulses through evolutions and through 
various experimental imperfections.  As a result, the spectral response of a brain metabolite to a 
localizing pulse sequence is usually quite different from what it would be to a single-pulse-acquire 
sequence.  In brain this is typically true for both a target metabolite and for the metabolites that give 
rise to the contaminating background.  However, even though anti-phase and multiple quantum 
coherences can’t be seen, they can still be manipulated, and by appropriate design of sequences, 
particularly editing sequences but also to some extent PRESS or STEAM (11), background 
contamination can be reduced (thereby making outcome of post-processing strategies such as LCModel 
(12) more reliable), or even eliminated.  A decade ago the design of multiple quantum filters enabled 
them to separate coupled-spin species (both weakly and strongly coupled species jointly) from 
uncoupled species.  However, more recent developments (13,14) have shown that they can also be 
designed to separate strongly coupled species from both weakly coupled and uncoupled species jointly. 
GABA:  For GABA, the low concentration taken together with the particular chemical shifts of each of 
its three proton multiplets, makes background contamination the most serious problem to its 
quantification by proton spectroscopy.  In consequence, some form of editing is almost always used.  
GABA lends itself well to editing because at 3.0 T and above, its spin system satisfies the weak-
coupling limit.  This is hardly true at 1.5 T (15).  The GABA A2 multiplet at 3.01 ppm, having a 
contaminating background from creatine (t-Cr-PCr), glutathione (GSH), homocarnosine, and 
macromolecules, is the most popular GABA target, although the X2 multiplet (with a different 
background) has been exploited (11) to quantify GABA in the human brain.  The homocarnosine, GSH 
and the macromolecular background resonances near 3.0 ppm, all have scalar-coupling partners.  Those 
of homocarnosine are closest to those of GABA.  The original editing method for GABA, (whose 
evolutionary derivative is still in use after more than a decade) was a difference methodology pioneered 
by the Yale group (16,17).  To avoid difference editing, a richness of other techniques has been 
proposed (18-22) that finds alternative ways to separate a GABA multiplet from its background.  These 
include a number of multiple quantum filters, some of which (18-21) exploit doubly-frequency-
selective pulses in order to manipulate the A2 and the M2 spins of GABA selectively and concurrently, 
and make the editing more specific to GABA than to its coupled-spin background.  Another important 
feature (19) reintroduces some original r.f. pulse design work of Geen and Freeman (23), (used 
elsewhere in a Glu filter (24) to eliminate the chemical shift dispersion in the initial transverse 
magnetization) to control the spin dynamics during a pulse whose role is concurrently spatial selectivity 
and coherence transfer.  Efforts to quantify GABA also include a novel proposition (25), verified on rats 
at 11.4 T, to clear all signals from the 3.0 ppm spectral region at the beginning of the sequence, and 
then regenerate a GABA A2 multiplet by polarization transfer from the M2 spins.  There are strategic 
similarities between this proposition and a localized TOCSY technique (26) for recovering weak 
signals from a totally suppressed part of the spectrum. An alternative to 1D spectral editing is to allow 
the spin evolution to play out in time while acquiring the transverse magnetization decay signal at 
successively incremented play-out time points. A data set in two time dimensions is therefore produced 
which permits a representation of the spectrum as a two-dimensional map with different spectral 
parameters e.g., scalar coupling strength, J, and chemical shift, δ, along the two axes of the map.  
Although a number of groups have explored this strategy at 3.0 T and 4.0 T respectively (27,28), the 
success which these groups have had with GABA does not appear to have surpassed that achieved with 
1D editing.  
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Glu - Gln:  The separation and quantification of Glu and Gln from the proton spectrum of brain is quite 
different from that of separating GABA from its background.  This is because the key protons of Glu 
and Gln are strongly coupled.  To reach the weak-coupling limit for all their couplings will require Bo > 
100 T, however the PQ to MN couplings will be in their weak limit by ~ 18 T.  What is more, their 
molecular structures are so similar that, as shown in Figs 2 and 3, their proton chemical shifts and 
coupling schemes are really difficult to distinguish.  Although multiple quantum filters have been 
published (24), recourse is typically taken, first, in moving to higher field strengths, and secondly, 
following a variant of a standard localization sequence, e.g., STEAM (29-33) or PRESS (34-37), in the 
LCModel.  The Minnesota group has been particularly successful with short-echo STEAM on rats at 
9.4 T (29,30), shortening the {TE, TM} time coordinates of STEAM to {≤ 2 ms, ≤ 20 ms} in order to 
beat the polarization transfer, which arises from strong coupling and which spoils the evolutionary J-
modulation that is easier to handle.  A similar strategy has been employed at 7.0 T on monkeys (31) 
with time coordinates {TE, TM} = {10 ms, 10 ms}.  Figure 6 illustrates the variation of the peak height 
of the central peak of the PQ multiplet of Glu as a function of these time coordinates of the STEAM 
sequence at different field strengths.  It emphasises not only the non-monotonic dependence of Glu 
signal intensity on those times and the rapid decay with TE, but it also demonstrates particularly, the 
exacerbation of the periodic dependence on TM as the field strength increases.  The periodicity arises 
from the oscillations of the real and imaginary parts of the zero quantum coherence during TM, 
oscillations whose frequency depends on the chemical shift separation of the coupled spin species and 
hence the field dependence.  A positive aspect of these periodic zeros in the Glx signal, is that they can 
be exploited for removing contaminating background due to Glx, from GABA X2 signals for instance 
(11). 
 

 

Proposals to mitigate the Glu strong-coupling effects in PRESS have included a short echo time 
sequence TE = 8 ms (34), an intermediate TE (80 ms) sequence (35), a longer effective-echo-time 
sequence (26 ms < TEeff < 150 ms) that incorporates a non-slice-selective refocussing Carr-Purcell 
pulse train (36), and TE averaging (37).  Representative Glu PQ multiplet intensity contours as a 
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function of the PRESS time coordinates {TE1, TE2} have been published (38), and while reflecting the 
underlying TE1-v-TE2 symmetry seen for weak coupling, they also demonstrate departures from it due 
to polarization transfer.  The advantages of adiabatic pulses (39,40) in spin-echo localization have been 
thoroughly demonstrated by Kinchesh and Ordidge (41) using the LASER sequence (40). 
The quantification of Glu and Gln by means of 13C spectroscopy (10 and references therein) is linked to 
the proton spin system, either through the use of hetero-nuclear polarization transfer to enhance the 13C 
SNR of the direct method of observation (42,43), or through the proton spectrum itself when indirect 
methods are used (44-46).  However, the protons attached to the C4 carbon position are strongly 
coupled to the protons attached to C3, i.e., the PQ and MN protons respectively.  This coupling has 
small but measurable effects on the hetero-nuclear polarization transfer of the direct method, but 
greater effects on the proton spectrum used in the indirect method (9).  For example, as a result of this 
coupling the PQ multiplet is not independent of C3 enrichment and neither is the MN multiplet 
independent of enrichments on C4.  Although an increasing field strength clearly enhances the SNR of 
both of these strategies, it is not likely to be great enough to change the strong inter-proton coupling 
situation.  The direct detection method, with its much simpler interpretation, is therefore likely to 
benefit most from higher fields. 
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